
メンガーのスポンジの次元は2より大きいため、2次元的な大きさである面積は無限である。 実際、表面積が1となる大きな立方体から穴を空けてメンガーのスポンジを構成する場合、一度穴を空ける毎にその表面積は1/3ずつ増加するため、穴を空ける回数をnとすると最終的に表面積は

メンガーのスポンジの次元は3より小さいため、3次元的な大きさである体積は 0 である。 実際、体積が1となる大きな立方体から穴を空けてメンガーのスポンジを構成する場合、一度穴を空ける毎にその体積は7/27ずつ減少するため、穴を空ける回数をnとすると最終的に体積は
