近似的なフラクタルな図形は、自然界のあらゆる場面で出現されるとされ(例:樹木の枝分かれ)、自然科学の新たなアプローチ手法となった。コンピュータグラフィックスにおける地形や植生などの自然物形状の自動生成のアルゴリズムとして用いられることも多い。
また、自然界で多くみられる一見不規則な変動(カオス)をグラフにプロットするとそのグラフはフラクタルな性質を示すことが知られ、カオスアトラクターと呼ばれる。株価の動向など社会的な現象もフラクタルな性質を持っている。当然、数学的に厳密なフラクタルは無限大を含むため自然界では成立しえず近似である。
血管の分岐構造や腸の内壁などはフラクタル構造であるが、それは次のような理由によるものだろうと考えられている。例えば血管の配置を考えたとき、生物において体積は有限であり貴重なリソースであると言えるので、血管が占有する体積は可能な限り小さいことが望ましい。一方、ガス交換等に使える血管表面積は可能な限り大きく取れる方が良い。
このような目的からすると、有限の体積の中に無限の表面積を包含できるフラクタル構造は非常に合理的かつ効率的であることが解る。しかも、このような構造を生成するために必要な設計情報も、比較的単純な手続きの再帰的な適用で済まされるので、遺伝情報に占める割合もごく少量で済むものと考えられる。